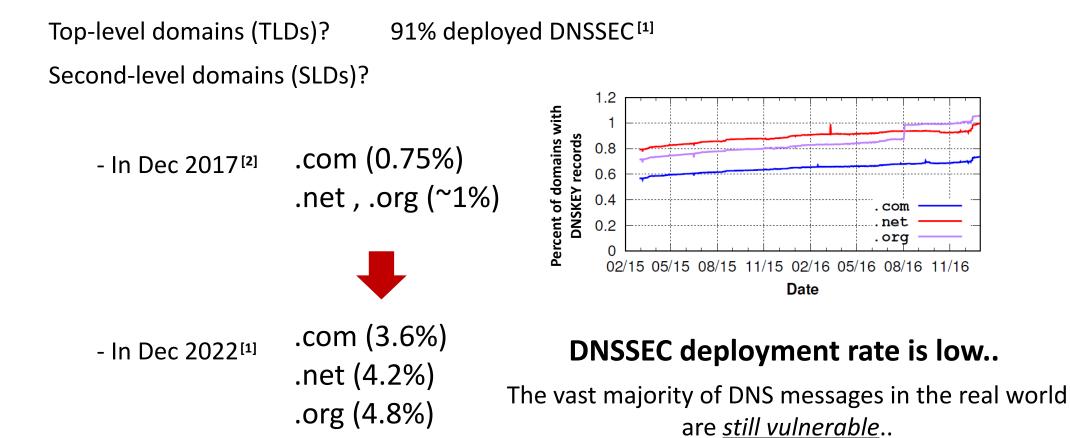
Guaranteeing the integrity of DNS records using PKIX Certificates

- OARC 40 -

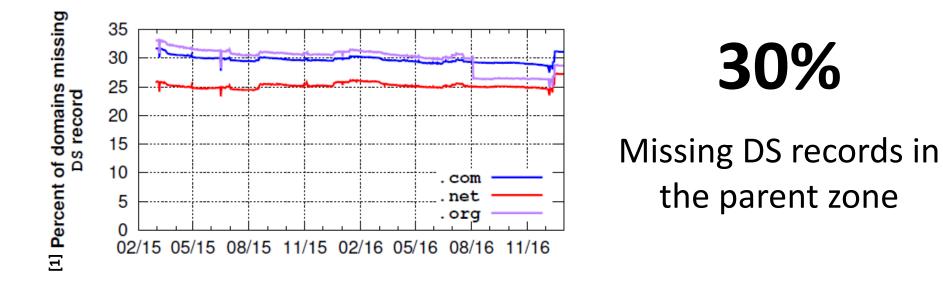
Sangyoon Seok, <u>Hyeonmin Lee</u>, Taekyoung "Ted" Kwon

Seoul National University


DNS Security

- **Domain Name System (DNS)** is used to map domain names to their resources (e.g., hostnames to IP addr.)
 - The DNS lookup process is followed by most Internet activities
- However, DNS does not have any security features in its initial design
 - No mechanism to verify the authenticity and integrity of DNS responses
 - Vulnerable to attacks such as DNS cache poisoning
- **DNS Security Extensions (DNSSEC)** were introduced to provide the integrity of DNS messages

DNS Security and DNSSEC [1/2]


• After two decades of DNSSEC introduction..

DNS Security and DNSSEC [2/2]

- Deploying/managing DNSSEC is burdensome and complex..
 - To deploy DNSSEC, a domain has to publish three DNS records (DNSKEY, RRSIG, and DS) to establish a DNSSEC chain
 - DS records have to be uploaded to the domain's parent zone
- Errors in the DNSSEC deployment/management

Objective

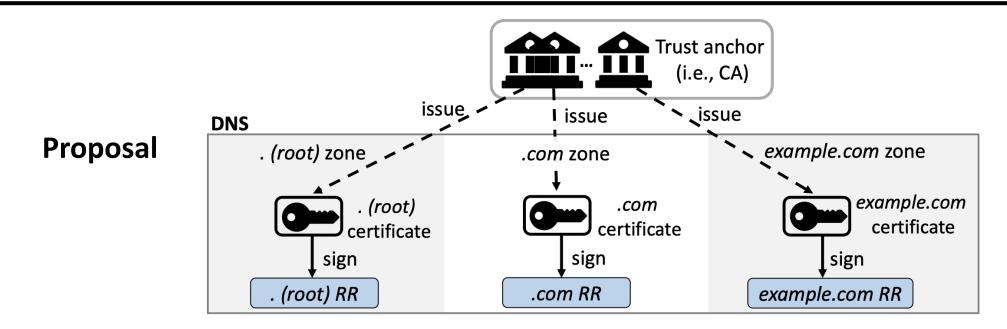
- Can we guarantee the integrity of DNS messages without dependencies to other zones that DNSSEC has (e.g., uploading DS records to the parent zone)?
- We need a more *practical* and *deployable* way

It should *minimally require a change (or cooperation) of other entities* in the DNS infrastructure such as parent zones or registrars

It should *maximally reuse* the current DNS infrastructure

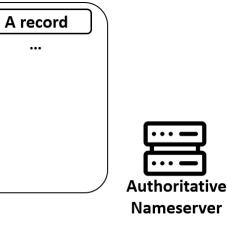
Leveraging PKIX Certificates issued by CAs


- Most domains already use public keys (in certificates) for HTTPS or TLS!
 - 94% of web traffic to Google is HTTPS^[3]
 - Usually, certificates are issued by public CAs the issuance process is well established (e.g., Let's Encrypt)



We can leverage PKIX certificates that have been successfully used by the domains

Guaranteeing the Integrity of DNS records [1/2]


7/13

Guaranteeing the Integrity of DNS records [2/2]

Domain

- 1. A domain is issued a *PKIX certificate* (or can reuse its certificate for TLS) (
- 2. The domain generates a signature of an RRset using its private key
- 3. The domain uploads the signature as a DNS record (**RRSIG** record)
- 4. Also, the domain uploads the public key (corresponding to the private key) as a **DNSKEY** record and a certificate chain as a **CERT** record *We propose to reuse the DNSKEY, RRSIG and CERT record types

Client-side

- i) A client fetches a DNS record (e.g., **A** record) and a signature (**RRSIG**) of the record
- ii) The client fetches the public key (**DNSKEY**) and the certificate chain (**CERT**), and validates them through the certificate chain verification process
- iii) The client verifies the signature (**RRSIG**) using the public key

Objective (Review)

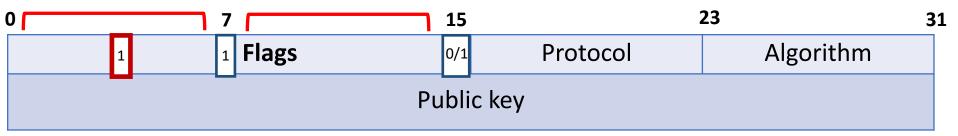
• Can we guarantee the integrity of DNS messages without dependencies to other zones that DNSSEC has (e.g., uploading DS records to the parent zone)?

• We need a more *practical* and *deployable* way

It should *minimally require a change (or cooperation) of other entities* in the DNS infrastructure such as parent zones or registrars

It should *maximally reuse* the current DNS infrastructure

[Requirement 1] Minimum change of other entities in DNS infra.


- Our design should minimally require a change (or cooperation) of other entities in the DNS infrastructure in its operation
 - We leverage CA-issued PKIX certificates (and public/private keys) which are widely used by domains
 - The public key can be verified through the certificate chain verification, which does not require cooperation from *other DNS entities*
 - cf) DNSSEC requires cooperation from parent zone or registrars to establish a chain of trust according to the DNS hierarchy (e.g., uploading DS records to the parent zone)
 - Only nameservers and local resolvers need to be changed
 - Deploying a CERT record (nameservers) and verifying a certificate chain (local resolvers)

[Requirement 2] Maximum reuse of the current DNS infra.

- We suggest exploiting existing record types: **DNSKEY**, **RRSIG**, and **CERT** records
 - **1. DNSKEY** stores a public key corresponding to the private key, which is used to generate signatures of DNS records
 - Flags field [4]
 - Two bits are used currently
 - * bit 7 set to 1? Holds a key for DNS zone
 - * bit 15 set to 1? KSK | set to 0? ZSK
 - Other bits (0-6, 8-14) are reserved for future use

-> We can exploit one of these bits to specify our usage

- 2. **RRSIG** stores signatures of RRsets
- **3. CERT** stores a certificate chain

Disclaimer

- We **do not** criticize or blame DNSSEC
- We try to find a practical and easier option for *domain owners* to protect their DNS message
- Our mechanism can coexist with DNSSEC
 - ex) if an upper zone does not support DNSSEC, then our mechanism can be deployed

Conclusion

- We proposed a practical way that guarantees the integrity of DNS messages
 - Most DNS messages in the real-world are not protected
 - Our mechanism minimally requires a change (or cooperation) of other entities in the DNS infrastructure
 - By leveraging PKIX certificates that are widely used by domains
 - Our mechanism is designed in a way that reuses the current DNS infrastructure
 - By exploiting existing DNS record types

Q & A

Thank you!

Hyeonmin Lee hmlee@mmlab.snu.ac.kr